These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of calcium and iron-enriched biochar on arsenic and cadmium accumulation from soil to rice paddy tissues. Author: Islam MS, Magid ASIA, Chen Y, Weng L, Ma J, Arafat MY, Khan ZH, Li Y. Journal: Sci Total Environ; 2021 Sep 01; 785():147163. PubMed ID: 33940407. Abstract: Arsenic (As) and cadmium (Cd) are nonessential toxic metal(loids) that are carcinogenic to humans. Hence, reducing the bioavailability of these metal(loids) in soils and decreasing their accumulation in rice grains is essential for agroecology, food safety, and human health. Iron (Fe)-enriched corncob biochar (FCB), Fe-enriched charred eggshell (FEB), and Fe-enriched corncob-eggshell biochar (FCEB) were prepared for soil amelioration. The amendment materials were applied at 1% and 2% application rates to observe their alleviation effects on As and Cd loads in rice paddy tissues and yield improvements using pot trials. The FCEB treatment increased paddy yields compared to those of FCB (9-12%) and FEB (3-36%); this could be because it contains more plant essential nutrients than FCB and a lower calcite content than that of FEB. In addition, FCEB significantly reduced brown rice As (AsBR, 29-60%) and Cd (CdBR, 57-81%) contents compared to those of the untreated control (CON). At a 2% application rate, FCEB reduced the average mobility of As (56%) and Cd (62%) in rhizosphere porewater and enhanced root Fe-plaque formation (76%) compared to those of CON. Moreover, the enhanced Fe-plaque sequestered a substantial amount of As (171.4%) and Cd (90.8%) in the 2% FCEB amendment compared to that of CON. Pearson correlation coefficients and regression analysis indicated that two key mechanisms likely control AsBR and CdBR accumulations. First, rhizosphere soil pH and Eh controlled As and Cd availabilities in porewaters and their speciation in the soil. Second, greater Fe-plaque formation in paddy roots grown in the amended soils provided a barrier for plant uptake of the metal(loids). These observations demonstrate that soil amendment with Fe-enriched corncob-eggshell biochar (e.g., 2% FCEB) is a prospective approach for the remediation of metal accumulation from the soil to grain system while simultaneously increasing paddy yield.[Abstract] [Full Text] [Related] [New Search]