These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of Light and Dark on the Phenolic Compound Accumulation in Tartary Buckwheat Hairy Roots Overexpressing ZmLC.
    Author: Park CH, Park YE, Yeo HJ, Park NI, Park SU.
    Journal: Int J Mol Sci; 2021 Apr 29; 22(9):. PubMed ID: 33946760.
    Abstract:
    Fagopyrum tataricum 'Hokkai T10' is a buckwheat cultivar capable of producing large amounts of phenolic compounds, including flavonoids (anthocyanins), phenolic acids, and catechin, which have antioxidant, anticancer, and anti-inflammatory properties. In the present study, we revealed that the maize transcription factor Lc increased the accumulation of phenolic compounds, including sinapic acid, 4-hydroxybenzonate, t-cinnamic acid, and rutin, in Hokkai T10 hairy roots cultured under long-photoperiod (16 h light and 8 h dark) conditions. The transcription factor upregulated phenylpropanoid and flavonoid biosynthesis pathway genes, yielding total phenolic contents reaching 27.0 ± 3.30 mg g-1 dry weight, 163% greater than the total flavonoid content produced by a GUS-overexpressing line (control). In contrast, when cultured under continuous darkness, the phenolic accumulation was not significantly different between the ZmLC-overexpressing hairy roots and the control. These findings suggest that the transcription factor (ZmLC) activity may be light-responsive in the ZmLC-overexpressing hairy roots of F. tataricum, triggering activation of the phenylpropanoid and flavonoid biosynthesis pathways. Further studies are required on the optimization of light intensity in ZmLC-overexpressing hairy roots of F. tataricum to enhance the production of phenolic compounds.
    [Abstract] [Full Text] [Related] [New Search]