These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Fabrication and characterization of dextran/zein hybrid electrospun fibers with tailored properties for controlled release of curcumin.
    Author: Luo S, Saadi A, Fu K, Taxipalati M, Deng L.
    Journal: J Sci Food Agric; 2021 Dec; 101(15):6355-6367. PubMed ID: 33969891.
    Abstract:
    BACKGROUND: In recent years, there has been considerable interest in the use of biopolymer electrospun nanofibers for various food applications due to the biocompatibility, biodegradability, and high loading capacity. Herein, we fabricated and characterized novel hybrid electrospun fibers from dextran (50%, w/v) and zein (0-30%, w/v) solutions, and the effects of various zein concentrations on the properties of the hybrid electrospun fibers were investigated. RESULTS: When zein was added at low concentrations (5% and 10%), dextran and zein showed poor miscibility, as reflected by significantly decreased viscosity of the solutions, and the poor mechanical properties of the derived fiber membranes. When zein was added at medium concentrations (15-25%), hydrogen bonds were formed between dextran and zein molecules, as indicated by the red shift of Fourier-transform infrared bands and β-sheet to α-helix structural transformations. The fiber membranes electrospun from a solution with 25% zein showed the most hydrophobic surface, with a water contact angle of 116.9°. The homogenous dispersion of dextran and zein resulted in improved mechanical properties for fibers electrospun from a solution with 30% zein. Curcumin encapsulating dextran/zein electrospun fibers exhibited effective radical scavenging activity and ferric reducing power, along with the desired controlled release behavior for curcumin delivery. CONCLUSION: Food grade dextran/zein hybrid electrospun fibers demonstrated tunable properties, and appear to be promising as delivery systems for bioactive and edible antimicrobial food packaging. © 2021 Society of Chemical Industry.
    [Abstract] [Full Text] [Related] [New Search]