These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The Mechanism of Macular Sparing. Author: Horton JC, Economides JR, Adams DL. Journal: Annu Rev Vis Sci; 2021 Sep 15; 7():155-179. PubMed ID: 33979527. Abstract: Patients with homonymous hemianopia sometimes show preservation of the central visual fields, ranging up to 10°. This phenomenon, known as macular sparing, has sparked perpetual controversy. Two main theories have been offered to explain it. The first theory proposes a dual representation of the macula in each hemisphere. After loss of one occipital lobe, the back-up representation in the remaining occipital lobe is postulated to sustain ipsilateral central vision in the blind hemifield. This theory is supported by studies showing that some midline retinal ganglion cells project to the wrong hemisphere, presumably driving neurons in striate cortex that have ipsilateral receptive fields. However, more recent electrophysiological recordings and neuroimaging studies have cast doubt on this theory by showing only a minuscule ipsilateral field representation in early visual cortical areas. The second theory holds that macular sparing arises because the occipital pole, where the macula is represented, remains perfused after occlusion of the posterior cerebral artery because it receives collateral flow from the middle cerebral artery. An objection to this theory is that it cannot account for reports of macular sparing in patients after loss of an entire occipital lobe. On close scrutiny, such reports turn out to be erroneous, arising from inadequate control of fixation during visual field testing. Patients seem able to detect test stimuli on their blind side within the macula or along the vertical meridian because they make surveillance saccades. A purported treatment for hemianopia, called vision restoration therapy, is based on this error. The dual perfusion theory is supported by anatomical studies showing that the middle cerebral artery perfuses the occipital pole in many individuals.In patients with hemianopia from stroke, neuroimaging shows preservation of the occipital pole when macular sparing is present. The frontier dividing the infarcted territory of the posterior cerebral artery and the preserved territory of the middle cerebral artery is variable, but always falls within the representation of the macula, because the macula is so highly magnified. For physicians, macular sparing was an important neurological sign in acute hemianopia because it signified a posterior cerebral artery occlusion. Modern neuroimaging has supplanted the importance of that clinical sign but at the same time confirmed its validity. For patients, macular sparing remains important because it mitigates the impact of hemianopia and preserves the ability to read fluently.[Abstract] [Full Text] [Related] [New Search]