These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Dissipation of antibiotic resistance genes in manure-amended agricultural soil. Author: He LY, He LK, Gao FZ, Wu DL, Zou HY, Bai H, Zhang M, Ying GG. Journal: Sci Total Environ; 2021 Sep 15; 787():147582. PubMed ID: 33992936. Abstract: Soil antibiotic resistance due to animal manure application is of great concern in recent years. Little is known about the fate of antibiotic resistance genes (ARGs) in agricultural soils associated with long-term manure application. Here we used soil microcosms to investigate the dissipation of ARGs and the change of bacterial community in agricultural soil originated from a vegetable field which had received 24 years' swine manure application. Soil microcosms were conducted at different soil moistures and with or without biochar over a testing period of two years in lab. Results showed that continuous manure application induced an accumulation of ARGs in soil, wherein the dissipation of ARGs differed from those in non-manure amended soil. ARGs persisted in soils at least two years, although their abundance declined gradually. Meanwhile, soil moisture and biochar had significant impact on the fate of ARGs. ARGs dissipated faster in soil with higher moisture. Biochar amendment contributed to the maintenance of bacterial diversity. Within the two years of simulation experiment, biochar enhanced soil ARG retention as they dissipated slowly in the soil amended with biochar. Succession of microbial community may have sustained the transfer and resilience of ARGs. This study provides insight into the dissipation of antibiotic resistance genes in manure-applied agricultural soil.[Abstract] [Full Text] [Related] [New Search]