These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Complex delayed and transgenerational effects driven by the interaction of heat and insecticide in the maternal generation of the wheat aphid, Sitobion avenae.
    Author: Cao JY, Xing K, Zhao F.
    Journal: Pest Manag Sci; 2021 Oct; 77(10):4453-4461. PubMed ID: 34002463.
    Abstract:
    BACKGROUND: Experience of an earlier environment plays an important role in the induction of delayed and even intergenerational phenotypes of an organism. Evidence suggests that rapid adaptation to an environmental stressor can change the performance of organisms, and even enable them to deal with other stressors. The goal of this study was to determine the effects of adult imidacloprid exposure on life-history traits within and between generations of the cereal aphid, Sitobion avenae, under three developmental conditions: constant temperature, 22°C; a low-intensity thermal condition, 22 + 34°C for 2 h per day; and a high-intensity thermal condition, 22 + 38°C for 2 h per day. RESULTS: Early thermal experience not only changed the tolerance of S. avenae to the insecticide, imidacloprid, but also caused adults to incur fitness costs: the higher the heat intensity, the higher the costs. Negative transgenerational impacts of combined heat and insecticide stressors were limited to the developmental stage, whereas positive stimulation of heat intensity was observed during the adult stage. Overall, nymphal thermal experience exacerbated the detrimental effects of adult insecticidal exposure on the intrinsic rate of population increase in the maternal generation, but stimulated a net reproductive rate in the succeeding offspring generation. CONCLUSION: These findings underpin the importance of considering the experience of the early developmental environment, but also enhance our understanding of the transgenerational effects of combined thermal and insecticide stressors on the population fate of S. avenae. They also help to assess the efficacy of chemical control in a warming world. © 2021 Society of Chemical Industry.
    [Abstract] [Full Text] [Related] [New Search]