These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Synthesis and characterization of a thermosensitive solid amine biomass adsorbent for carbon dioxide adsorption.
    Author: Liu H, Liang Z, Wang S, Ma N, Chen S.
    Journal: J Environ Manage; 2021 Aug 15; 292():112722. PubMed ID: 34010727.
    Abstract:
    A thermosensitive solid amine fiber SF-AM-co-NIPAM-HBP-NH2 was synthesized by grafting temperature-sensitive monomer N-isopropyl acrylamide (NIPAM) as well as acrylamide (AM) onto the surface of substrate sisal fiber, and further aminating with hyperbranched amine. FTIR, 13C NMR, SEM, EA and TGA were used to confirm the structure and chemical properties of the grafted fibers. Swelling ratio and CO2 adsorption-desorption experiment were investigated to verify the thermo-sensitivity of the grafted fibers and their CO2 adsorption-desorption behavior. Compared with conventional solid amine adsorbents regenerated around 140 °C, SF-AM-co-NIPAM-HBP-NH2 (1:1) with NIPAM could be regenerated at a much lower temperature of 60 °C, while still maintain a high CO2 adsorption capacity (2.61 mmol/g), comparable to that of SF-AM-HBP-NH2 (2.73 mmol/g) before NIPAM introduction. Its excellent regeneration property and the effect of energy consumption reduction make it possible to be used for CO2 adsorption in industrial process.
    [Abstract] [Full Text] [Related] [New Search]