These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Electrospun Polymer-Free Nanofibers Incorporating Hydroxypropyl-β-cyclodextrin/Difenoconazole via Supramolecular Assembly for Antifungal Activity.
    Author: Gao S, Jiang J, Li X, Ye F, Fu Y, Zhao L.
    Journal: J Agric Food Chem; 2021 Jun 02; 69(21):5871-5881. PubMed ID: 34013730.
    Abstract:
    In this study, flexible and self-standing hydroxypropyl-β-cyclodextrin/difenoconazole inclusion complex (HPβCD/DZ-IC) nanofibers were prepared by polymer-free electrospinning, which exhibited potential to be a new fast-dissolving pesticide formulation. Scanning electron microscopy and optical microscopy were applied to evaluate the morphology of nanofibers, which showed that the resulting HPβCD/DZ-IC nanofibers were bead-free and uniform. In addition, the proton nuclear magnetic resonance (1H NMR) spectrum suggested a stoichiometric ratio of 1:0.9 (HPβCD/DZ). Other characterization methods, such as UV-vis absorption, fluorescence spectroscopy, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA), were applied in this study. On the one hand, UV-vis absorption, fluorescence spectroscopy, FT-IR, XRD, and TGA provided useful information for the successful formation of an inclusion complex; on the other hand, the results of TGA indicated the thermal stability of DZ was enhanced after the formation of inclusion complexes. Besides, the phase solubility test could explain the increased water solubility of the nanofibers of inclusion complexes formed by DZ and HPβCD. The results of molecular docking studies demonstrated the most favorable binding interactions when HPβCD combined with DZ. The dissolution test and the antifungal performance test exhibited the characteristics of fast dissolution and the excellent antifungal performance of HPβCD/DZ-IC nanofibers, respectively.
    [Abstract] [Full Text] [Related] [New Search]