These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Electrical stimulation of neonatal rat cardiomyocytes using conductive polydopamine-reduced graphene oxide-hybrid hydrogels for constructing cardiac microtissues.
    Author: Li XP, Qu KY, Zhou B, Zhang F, Wang YY, Abodunrin OD, Zhu Z, Huang NP.
    Journal: Colloids Surf B Biointerfaces; 2021 Sep; 205():111844. PubMed ID: 34015732.
    Abstract:
    The development of diversified biomaterials in tissue engineering has been promoted by growing research into carbon-based nanomaterials. Usually, ideal scaffold materials should possess properties similar to the extracellular matrix of natural myocardial tissue. In this study, dopamine-reduced graphene oxide (GO), was prepared and doped into gelatin methacrylate (GelMA) hydrogels, resulting in novel conductive and mechanical properties for controlling cell growth. Cardiomyocytes (CMs) cultured on PDA-rGO-incorporated hydrogels (GelMA-PDA-rGO) had greater cytocompatibility than those cultured on GelMA hydrogels, as evidenced by higher cell survival rates and up-regulation of cardiac-relevant proteins. Finally, electrical stimulation was applied to facilitate the maturation of CMs which was seeded on different hydrogels. The findings revealed that electrical stimulation of conductive hybrid hydrogel scaffolds improved the orientational order parameter of sarcomeres (OOP). In addition, propagation of intercellular pacing signals, which improves the expression of gap junction proteins was noticed, likewise calcium handling capacity was present in conductive hybrid hydrogels compared to those in pure GelMA group. This study has shown that the combination of GelMA-PDA-rGO based conductive hydrogels and electrical stimulation possessed synergistic effects for engineering a more functional and mature myocardium layer as well as further application in drug screening and disease modeling in vitro.
    [Abstract] [Full Text] [Related] [New Search]