These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Indirectly Detected DNP-Enhanced 17 O NMR Spectroscopy: Observation of Non-Protonated Near-Surface Oxygen at Naturally Abundant Silica and Silica-Alumina. Author: Kobayashi T, Pruski M. Journal: Chemphyschem; 2021 Jul 16; 22(14):1441-1445. PubMed ID: 34019318. Abstract: Recent studies have shown that dynamic nuclear polarization (DNP) can be used to detect 17 O solid-state NMR spectra of naturally abundant samples within a reasonable experimental time. Observations using indirect DNP, which relies on 1 H mediation in transferring electron hyperpolarization to 17 O, are currently limited mostly to hydroxyls. Direct DNP schemes can hyperpolarize non-protonated oxygen near the radicals; however, they generally offer much lower signal enhancements. In this study, we demonstrate the detection of signals from non-protonated 17 O in materials containing silicon. The sensitivity boost that made the experiment possible originates from three sources: indirect DNP excitation of 29 Si via protons, indirect detection of 17 O through 29 Si nuclei using two-dimensional 29 Si{17 O} D-HMQC, and Carr-Purcell-Meiboom-Gill refocusing of 29 Si magnetization during acquisition. This 29 Si-detected scheme enabled, for the first time, 2D 17 O-29 Si heteronuclear correlation spectroscopy in mesoporous silica and silica-alumina surfaces at natural abundance. In contrast to the silanols showing motion-averaged 17 O signals, the framework oxygens exhibit unperturbed powder patterns as unambiguous fingerprints of surface sites. Along with hydroxyl oxygens, detection of these moieties will help in gaining more atomistic-scale insights into surface chemistry.[Abstract] [Full Text] [Related] [New Search]