These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Synthesis, In-vitro evaluation and molecular docking studies of oxoindolin phenylhydrazine carboxamides as potent and selective inhibitors of ectonucleoside triphosphate diphosphohydrolase (NTPDase).
    Author: Afzal S, Al-Rashida M, Hameed A, Pelletier J, Sévigny J, Iqbal J.
    Journal: Bioorg Chem; 2021 Jul; 112():104957. PubMed ID: 34020240.
    Abstract:
    Members of the ectonucleoside triphosphate diphosphohydrolases (NTPDases) constitute the major family of enzymes responsible for the maintenance of extracellular levels of nucleotides and nucleosides by catalyzing the hydrolysis of nucleoside triphosphate (NTP) and nucleoside diphosphates (NDP) to nucleoside monophosphate (NMP). Although, NTPDase inhibitors can act as potential drug candidates for the treatment of various diseases, there is lack of potent as well as selective inhibitors of NTPDases. The current study describes the synthesis of a number of carboxamide derivatives that were tested on recombinant human (h) NTPDases. The most promising inhibitors were 2h (h-NTPDase1, IC50: 0.12 ± 0.03 µM), 2d (h-NTPDase2, IC50: 0.15 ± 0.01 µM) and 2a (h-NTPDase3, IC50: 0.30 ± 0.04 µM; h-NTPDase8, IC50: 0.16 ± 0.02 µM). Four compounds (2e, 2f, 2g and 2h) were associated with the selective inhibition of h-NTPDase1 while 2b was identified as a selective h-NTPDase3 inhibitor. Considering the importance of NTPDase3 in the regulation of insulin release, the NTPDase3 inhibitors were further investigated to elucidate their role in the insulin release. The obtained data suggested that compound 2a was actively participating in regulating the insulin release without producing any effect on NTPDase3 mRNA. Moreover, the most potent inhibitors were docked within the active site of respective enzyme and the observed interactions were in compliance with in vitro results. Hence, these compounds can be used as pharmacological tool to further investigate the role of NTPDase3 coupled to insulin release.
    [Abstract] [Full Text] [Related] [New Search]