These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Long noncoding RNA SOX2OT silencing alleviates cerebral ischemia-reperfusion injury via miR-135a-5p-mediated NR3C2 inhibition.
    Author: Wang C, Hu F.
    Journal: Brain Res Bull; 2021 Aug; 173():193-202. PubMed ID: 34022287.
    Abstract:
    OBJECTIVE: This study is aimed to investigate the role of the long noncoding RNA SOX2 overlapping transcript (SOX2OT) in cerebral ischemia-reperfusion injury (CIRI) and the underlying regulatory mechanisms. METHODS: The oxygen-glucose deprivation/reoxygenation (OGD/R)-treated PC12 cells and middle cerebral artery occlusion/reperfusion (MCAO/R)-treated rats were established to simulate CIRI condition in vitro and in vivo. Quantitative real-time polymerase chain reaction was performed to detect the expression of SOX2OT, microRNA-135a-5p (miR-135a-5p), and nuclear receptor subfamily 3 group C member 2 (NR3C2). The cell viability and apoptosis were analyzed by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assays. The levels of lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD), and reactive oxygen species (ROS) or interleukin (IL)-1β and IL-6 were used to evaluate the oxidative stress or inflammation. Dual-luciferase reporter assay was conducted to validate the interactions among SOX2OT, miR-135a-5p, and NR3C2. Additionally, neurological deficit scores (NDS), infarct volume, and brain edema were used to assess brain impairments in vivo. RESULTS: The expression of SOX2OT and NR3C2 was increased, while miR-135a-5p was decreased in OGD/R-treated PC12 cells. SOX2OT silencing repressed the levels of LDH, MDA, ROS, IL-1β, IL-6, reduced the numbers of TUNEL positive cells, and elevated viability and SOD level in OGD/R-treated PC12 cells. Besides, SOX2OT targeted miR-135a-5p, and miR-135a-5p targeted NR3C2. Both miR-135a-5p downregulation and NR3C2 upregulation reversed the suppressive effects of SOX2OT knockdown on oxidative stress, apoptosis, and inflammation of OGD/R-treated PC12 cells. Furthermore, injection of sh-SOX2OT reduced the NDS, cerebral infarct, and cerebral edema in MCAO/R-treated rats. CONCLUSIONS: Silencing of SOX2OT attenuated CIRI via regulation of the miR-135a-5p/NR3C2 axis, which may provide a novel therapeutic target for CIRI.
    [Abstract] [Full Text] [Related] [New Search]