These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Detection of early decay on citrus using LW-NIR hyperspectral reflectance imaging coupled with two-band ratio and improved watershed segmentation algorithm. Author: Tian X, Zhang C, Li J, Fan S, Yang Y, Huang W. Journal: Food Chem; 2021 Oct 30; 360():130077. PubMed ID: 34022516. Abstract: Decay is a serious problem in citrus storage and transportation. However, the automatic detection of decayed citrus remains a problem. In this study, the long wavelength near-infrared (LW-NIR) hyperspectra reflectance images (1000-1850 nm) of oranges were obtained, and an effective method to detect decayed citrus was proposed. Three effective wavelength selection algorithms and two classification algorithms were used to build decay detection models in pixel-level, as well as the two-band ratio images, pseudo-color image enhancement and improved watershed segmentation were used to build decay detection models in image-level. The image-level detection method proposed in this study obtained a total success rate of 92% for all fruit, indicating its potential to detect decayed oranges online. Moreover, the LW-NIR hyperspectral reflectance imaging is verified as a useful method to detect surface defects of fruits.[Abstract] [Full Text] [Related] [New Search]