These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: High crystalline magnetic covalent organic framework with three-dimensional grapevine structure for ultrasensitive extraction of nitro-polycyclic aromatic hydrocarbons in food and environmental samples. Author: Wang XX, Liu L, Wang XL, Xu GJ, Zhao RS, Wang ML, Lin JM, Wang X. Journal: Food Chem; 2021 Nov 01; 361():130018. PubMed ID: 34023690. Abstract: Developing and establishing an efficient pre-treatment approach for the precise extraction of nitrated-polycyclic aromatic hydrocarbons (N-PAHs) from real-life samples is critical for ensuring their safety. In this study, a novel crystalline magnetic covalent organic framework with a grapevine structure not a single core-shell, Fe3O4@TAPT-DMTA-COF, was fabricated via chemical bonding. Unchanging the reticulated structure and high crystallinity of TAPT-DMTA-COF, the combination made this material possess not only simple operation via magnetic decantation but also remarkable chemical stability. Fe3O4@TAPT-DMTA-COF had a large surface area (1578.45 m2/g), and rich electronegative triazine-groups, which makes it become a superior magnetic enrichment material for trace N-PAHs. For N-PAHs analysis, low limits of detection (LODs) (1.43-17.24 ng/L), excellent relative standard deviations (RSDs ≤ 11.52%), and wide linearity (10-5000 ng/L) were obtained. Real-life applications based on this composite have been successfully explored by capturing the N-PAHs emitted from food and environmental samples.[Abstract] [Full Text] [Related] [New Search]