These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cold stress treatment enhances production of metabolites and biodiesel feedstock in Porphyridium cruentum via adjustment of cell membrane fluidity. Author: Huang JJ, Cheung PCK. Journal: Sci Total Environ; 2021 Aug 01; 780():146612. PubMed ID: 34030318. Abstract: Porphyridium cruentum, a cell-wall-free marine Rhodophyta microalga was cultured under a 5-day cold stress at 0 °C and 15 °C, after reaching the late logarithmic growth phase. Compared with the control at 25 °C, the cold stress treatment significantly (p < 0.05) increased the microalgal biomass (1.21-fold); the amounts of total polyunsaturated fatty acids (1.22-fold); individual fatty acids including linoleic acid (1.50-fold) and eicosatrienoic acid (1.85-fold), and a major carotenoid zeaxanthin (1.53-fold). Furthermore, production of biodiesel feedstock including total C16 + C18 fatty acids was significantly enhanced (p < 0.05) by 1.18-fold after the cold stress treatment. Principal component analysis further indicated that the biosynthetic pathways of fatty acids and carotenoids in this microalga were correlated with the cold stress treatment. These results suggested that P. cruentum had adjusted its cellular membrane fluidity via an 'arm-raising and screw-bolt fastening' mechanism mediated by the synergistic roles of cis-unsaturated fatty acids and carotenoids. The insight obtained from the responses to cold stress in P. cruentum could be a novel technological approach to enhance the production of microalgal metabolites and biodiesel feedstock.[Abstract] [Full Text] [Related] [New Search]