These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Degradation of pulmonary surfactant disaturated phosphatidylcholines by alveolar macrophages.
    Author: Miles PR, Ma JY, Bowman L.
    Journal: J Appl Physiol (1985); 1988 Jun; 64(6):2474-81. PubMed ID: 3403431.
    Abstract:
    Experiments were performed to determine whether rat pulmonary surfactant disaturated phosphatidylcholines (DSPC) are degraded by alveolar macrophages in vitro. When [3H]choline-labeled surfactant materials are incubated with unlabeled alveolar macrophages, approximately 40% of the labeled DSPC is broken down in 6 h. There is just a slight decrease in the specific activity of DSPC, which suggests that most products of degradation are not reincorporated into DSPC, at least during the 6-h incubation period. There is a time- and temperature-dependent association of surfactant DSPC with alveolar macrophages, and some of the cell-associated materials are released from the cell fragments after sonication. Association of surfactant with the cells precedes degradation. The breakdown of surfactant DSPC by intact alveolar macrophages lags behind that produced by sonicated cell preparations with disrupted cell membranes. These data and other information suggest that the surfactant materials are internalized by the cells, before the breakdown. The products of degradation probably include free choline and fatty acids, most of which appear in the extracellular fluid. The breakdown processes do not seem to depend on the physical form of the surfactant or on the presence of surfactant apoproteins. Incubation of the cells alone also results in disappearance of intracellular DSPC, some of which may be surfactant phospholipid taken up by the cells in vivo. These results indicate that alveolar macrophages can degrade surfactant DSPC and suggest that these cells may be involved in catabolism of pulmonary surfactant materials.
    [Abstract] [Full Text] [Related] [New Search]