These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Enhanced Penetrability of a Tetrahedral Framework Nucleic Acid by Modification with iRGD for DOX-Targeted Delivery to Triple-Negative Breast Cancer.
    Author: Liu M, Ma W, Zhao D, Li J, Li Q, Liu Y, Hao L, Lin Y.
    Journal: ACS Appl Mater Interfaces; 2021 Jun 09; 13(22):25825-25835. PubMed ID: 34038071.
    Abstract:
    Poor penetrability and nonselective distribution of chemotherapeutic drugs are the main obstacles for chemotherapy for triple-negative breast cancer (TNBC). In our work, we developed a DNA-based drug delivery system to surmount these barriers. In addition, a tetrahedral framework nucleic acid (tFNA) was employed to load doxorubicin (DOX) with iRGD decoration to form a novel nanoparticle (tFNA/DOX@iRGD). The RGD sequence and the CendR motif in iRGD are used in tumor targeting and tissue penetration, respectively. Based on the sustained serum stability and pH-sensitive release behavior of DOX, tFNA/DOX@iRGD exhibited superiority for biomedical application. Moreover, tFNA/DOX@iRGD showed excellent deep penetration and drug accumulation in three-dimensional (3D) multicellular tumor spheroids compared to DOX and tFNA/DOX. Additionally, the therapeutic effect was verified in a 4T1 subcutaneous tumor model, and the complexes displayed a superior antitumor and antiangiogenic efficiency with fewer collateral damages. Therefore, these findings suggested that tFNA/DOX@iRGD might be a more effective pattern for drug delivery and TNBC therapy.
    [Abstract] [Full Text] [Related] [New Search]