These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Spatial distribution and air-water exchange of organophosphate esters in the lower Great Lakes.
    Author: Ma Y, Vojta S, Becanova J, Habtemichael AZ, Adelman DA, Muir D, Lohmann R.
    Journal: Environ Pollut; 2021 Oct 01; 286():117349. PubMed ID: 34052653.
    Abstract:
    Organophosphate esters (OPEs) have been detected at elevated concentrations in the Great Lakes region, dwarfing other flame retardants, such as polybrominated diphenylethers (PBDEs), as chemicals of emerging concern (CECs). This prompted us to deploy polyethylene (PE) passive samplers in air and water column of the lower Great Lake region (Lake Erie and Lake Ontario) to detect gaseous and dissolved OPEs, evaluate their occurrence and spatial distribution, and estimate their air-water gas exchange fluxes. The median concentration of the total dissolved and gaseous phase OPEs detected (Σ9OPEs) were 95 ng L-1 and 404 pg m-3, respectively, during April-November 2014. Gaseous and dissolved concentrations were dominated by chlorinated compounds, in particular (tris(2-chloroethyl) phosphate (TCEP) and tris(2-chloroisopropyl) phosphate (TCPP), while tri-n-butyl phosphate (TnBP) was the dominant non-chlorinated OPEs in both media. Decreasing concentration gradients from shoreline/nearshore to offshore sites for both gaseous and aqueous OPEs reflect anthropogenic influence from the adjacent rural and urban regions. The partial dependence of gaseous OPEs on temperature indicate the importance of volatilization from local sources, fresh emissions as well as advection from distant sources to air. Almost all OPEs underwent net gas-phase deposition to the lakes, dominated by TCEP and TCPPs with median fluxes of -3980 ng/m2/day and -1320 ng/m2/day; the exception was TnBP, which underwent volatilization with the median fluxes of 1980 ng/m2/day. For all air-water pairs, the gaseous diffusive fluxes were 2-4 orders of magnitude greater than the estimated particle dry deposition fluxes.
    [Abstract] [Full Text] [Related] [New Search]