These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: MiR-133a-3p attenuates resistance of non-small cell lung cancer cells to gefitinib by targeting SPAG5. Author: Li Q, Wang Y, He J. Journal: J Clin Lab Anal; 2021 Jul; 35(7):e23853. PubMed ID: 34057242. Abstract: BACKGROUND: Gefitinib is an epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), clinically used to treat patients with non-small cell lung cancer driven by EGFR mutations. Unfortunately, EGFR-TKI resistance has become a clinical problem for the effective treatment of NSCLC patients. The purpose of this study was to explore the effect and mechanism of miR-133a-3p on the gefitinib sensitivity of NSCLC cells. METHODS: The gefitinib-resistant PC9 (PC9/GR) cells were established through repeated long-term exposure to gefitinib for half a year. Then, PC9/GR cells were transfected with miR-133a-3p mimics and PC9 cells were transfected with miR-133a-3p inhibitors to increase or decrease the expression of miR-133a-3p. CCK-8 assay, colony formation assay, and caspase-3 activity assay were employed to detect cell resistance to gefitinib. Quantitative real-time PCR and Western blotting were used to evaluate the levels of miR-133a-3p, SPAG5, and other related genes. Starbase database was used to predict the target gene of miR-133a-3p and the prognosis of NSCLC patients. Target gene of miR-133a-3p was verified through dual-luciferase reporter gene assay. RESULTS: MiR-133a-3p was significantly downregulated in gefitinib-resistant cell line PC9/GR vs. gefitinib-sensitive cell line PC9. Overexpression of miR-133a-3p increased the sensitivity of NSCLC cells to gefitinib and vice versa. Furthermore, SPAG5 is an important target gene of miR-133a-3p, and SPAG5 can reverse miR-133a-3p-mediated gefitinib sensitivity of NSCLC cells. CONCLUSIONS: These findings indicated that miR-133a-3p/SPAG5 axis played a vital role in acquired resistance to gefitinib in NSCLC cells, and miR-133a-3p may represent a potential therapeutic strategy for the treatment of human NSCLC.[Abstract] [Full Text] [Related] [New Search]