These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Wireless UV-A LEDs-driven AOP in the treatment of agro-industrial wastewaters. Author: Ferreira LC, Fernandes JR, Peres JA, Tavares PB, Lucas MS. Journal: Environ Res; 2021 Sep; 200():111430. PubMed ID: 34062199. Abstract: A wireless UV-A LEDs lab-scale reactor powered by a resonant inductive coupling (RLC) system was built to maximize the UV photon absorption of agro-industrial wastewaters. The UV-A LEDs (λ = 365 nm) energy was supplied through a magnetic field generated inside of the photoreactor by induction coils placed on the external wall made of polyvinyl chloride. Immersing the light sources in the wastewater increases the photon transfer efficiency and the reaction rate. Maximum magnetic field and optical irradiance were obtained at 26.8 and 27.0 kHz, respectively. As proof-of-concept, elderberry wastewater (EW), olive washing wastewater (OWW) and white and red winery wastewaters (WWW and RWW) were treated combining the wireless UV-A LEDs with the Advanced Oxidation Process (AOP) - Fenton reagent. Fenton experiments were performed using [Fe2+] = 10 mg L-1, [H2O2] = 500 mg L-1, pH = 3 and a reaction time of 4 h. With EW a DOC removal of 35% (k = 0.0696 h-1) was achieved, whereas adding the wireless UV-A LEDs (f = 26.8 kHz) 53% was attained (k = 0.1722 h-1). The Electric Energy per Order (EEO) for the wireless UV-A LEDs consumption was calculated (EEO LEDs = 48.7 kWh m-3 order-1) and for all the remain equipment (air pump, RC box and power amplifier), EEO total = 495 kWh m-3 order-1. Experiments with OWW presented a DOC removal of 62% and a EEO LEDs = 40.5 kWh m-3 order-1; RWW shown 40% of DOC removal and a EEO LEDs = 68.4 kWh m-3 order-1, while with WWW 35% of DOC removal and a EEO LEDs = 79.8 kWh m-3 order-1 were obtained. This work shows that wireless UV-A LEDs can be a promising alternative to conventional UV lamps and wired LEDs in the treatment of real wastewaters. However, optimization of the induction system is still needed, as well as the number and wavelength of the LEDs (e.g. UV-C LEDs) to reduce the overall treatment costs.[Abstract] [Full Text] [Related] [New Search]