These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Temperature Effect of van der Waals Epitaxial GaN Films on Pulse-Laser-Deposited 2D MoS2 Layer.
    Author: Susanto I, Tsai CY, Ho YT, Tsai PY, Yu IS.
    Journal: Nanomaterials (Basel); 2021 May 26; 11(6):. PubMed ID: 34073367.
    Abstract:
    Van der Waals epitaxial GaN thin films on c-sapphire substrates with a sp2-bonded two-dimensional (2D) MoS2 buffer layer, prepared by pulse laser deposition, were investigated. Low temperature plasma-assisted molecular beam epitaxy (MBE) was successfully employed for the deposition of uniform and ~5 nm GaN thin films on layered 2D MoS2 at different substrate temperatures of 500, 600 and 700 °C, respectively. The surface morphology, surface chemical composition, crystal microstructure, and optical properties of the GaN thin films were identified experimentally by using both in situ and ex situ characterizations. During the MBE growth with a higher substrate temperature, the increased surface migration of atoms contributed to a better formation of the GaN/MoS2 heteroepitaxial structure. Therefore, the crystallinity and optical properties of GaN thin films can obviously be enhanced via the high temperature growth. Likewise, the surface morphology of GaN films can achieve a smoother and more stable chemical composition. Finally, due to the van der Waals bonding, the exfoliation of the heterostructure GaN/MoS2 can also be conducted and investigated by transmission electron microscopy. The largest granular structure with good crystallinity of the GaN thin films can be observed in the case of the high-temperature growth at 700 °C.
    [Abstract] [Full Text] [Related] [New Search]