These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A screen printed electrode modified with Fe3O4@polypyrrole-Pt core-shell nanoparticles for electrochemical detection of 6-mercaptopurine and 6-thioguanine.
    Author: Tajik S, Beitollahi H, Jang HW, Shokouhimehr M.
    Journal: Talanta; 2021 Sep 01; 232():122379. PubMed ID: 34074387.
    Abstract:
    In this paper, Fe3O4@ppy-Pt core-shell nanoparticles (NPs) could be produced and utilized for the development of a novel electrochemical sensor to detect 6-mercaptopurine (6-MP). 6-MP determination was examined by cyclic voltammetry (CV), chronoamperometry (CHA), linear sweep voltammetry (LSV), and differential pulse voltammetry (DPV) at Fe3O4@ppy-Pt core-shell NPs modified screen printed electrode (Fe3O4@ppy-Pt/SPE) in phosphate buffered solution (PBS). The outcomes obtained from DPV demonstrated that the Fe3O4@ppy-Pt/SPE proved a linear concentration range among 0.04 and 330.0 μM having a detection limit of 10.0 nM for 6-MP. Also, modified electrode was satisfactorily utilized to detect 6-MP in the presence of 6-thioguanine (6-TG). This sensor showed two separate oxidative peaks at 530 mV for 6-MP and at 730 mV for 6-TG with a peak potential separation of 200 mV which was large enough for simultaneous detection of the two anticancer drugs. In addition, the proposed sensor presented long-term stability, good repeatability, and excellent reproducibility. Finally, the modified electrode demonstrated satisfactory outcomes while used in real samples, proposing the appropriate potential of Fe3O4@ppy-Pt/SPE in the case of clinical diagnosis, biological samples and pharmaceutical compounds analysis.
    [Abstract] [Full Text] [Related] [New Search]