These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Peptide nucleic acid-assisted colorimetric detection of single-nucleotide polymorphisms based on the intrinsic peroxidase-like activity of hemin-carbon nanotube nanocomposites.
    Author: Xu M, Xing S, Zhao Y, Zhao C.
    Journal: Talanta; 2021 Sep 01; 232():122420. PubMed ID: 34074407.
    Abstract:
    Here, taking the advantage of single-stranded (ss) DNA specific nuclease (S1) and peptide nucleic acid (PNA), we demonstrated a novel, rapid, and label-free colorimetric nanosensor for the sensitive and accurate detection of SNPs based on the intrinsic peroxidase-like activity of hemin-functionalized single-walled carbon nanotubes (hemin-SWCNTs). PNA, a man-made mimic of DNA with extraordinary stability toward enzymatic degradation, can effectively protect DNA in the fully matched DNA/PNA duplexes from nuclease digestion. While the DNA in DNA/PNA duplexes containing a mismatch can be cleaved into small fragments. This difference can be visually monitored from the specific color change of TMB/H2O2 system by employing the peroxidase activity of hemin-SWCNTs because of its different aggregation states responding to ssPNA or DNA/PNA duplex. Under optimized conditions, the SNPs in the human tumor suppressor gene TP53 have been successfully genotyped in a linear range of 50-1000 nM with a detection limit of 0.11 nM. Moreover, this platform can effectively discriminate a series of single-base mismatches. This assay avoids the assistance of sophisticated instruments and complicated modifications of probes or nanomaterials, and function well for both cell lysate samples and PCR amplicons from standard cell lines, implying its potential practical applications for bioanalysis and biosensors.
    [Abstract] [Full Text] [Related] [New Search]