These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Large intrinsic anomalous Hall effect in SrIrO3 induced by magnetic proximity effect.
    Author: Yoo MW, Tornos J, Sander A, Lin LF, Mohanta N, Peralta A, Sanchez-Manzano D, Gallego F, Haskel D, Freeland JW, Keavney DJ, Choi Y, Strempfer J, Wang X, Cabero M, Vasili HB, Valvidares M, Sanchez-Santolino G, Gonzalez-Calbet JM, Rivera A, Leon C, Rosenkranz S, Bibes M, Barthelemy A, Anane A, Dagotto E, Okamoto S, Te Velthuis SGE, Santamaria J, Villegas JE.
    Journal: Nat Commun; 2021 Jun 02; 12(1):3283. PubMed ID: 34078889.
    Abstract:
    The anomalous Hall effect (AHE) is an intriguing transport phenomenon occurring typically in ferromagnets as a consequence of broken time reversal symmetry and spin-orbit interaction. It can be caused by two microscopically distinct mechanisms, namely, by skew or side-jump scattering due to chiral features of the disorder scattering, or by an intrinsic contribution directly linked to the topological properties of the Bloch states. Here we show that the AHE can be artificially engineered in materials in which it is originally absent by combining the effects of symmetry breaking, spin orbit interaction and proximity-induced magnetism. In particular, we find a strikingly large AHE that emerges at the interface between a ferromagnetic manganite (La0.7Sr0.3MnO3) and a semimetallic iridate (SrIrO3). It is intrinsic and originates in the proximity-induced magnetism present in the narrow bands of strong spin-orbit coupling material SrIrO3, which yields values of anomalous Hall conductivity and Hall angle as high as those observed in bulk transition-metal ferromagnets. These results demonstrate the interplay between correlated electron physics and topological phenomena at interfaces between 3d ferromagnets and strong spin-orbit coupling 5d oxides and trace an exciting path towards future topological spintronics at oxide interfaces.
    [Abstract] [Full Text] [Related] [New Search]