These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Baicalin Inhibits NLRP3 Inflammasome Activity Via the AMPK Signaling Pathway to Alleviate Cerebral Ischemia-Reperfusion Injury. Author: Zheng WX, He WQ, Zhang QR, Jia JX, Zhao S, Wu FJ, Cao XL. Journal: Inflammation; 2021 Oct; 44(5):2091-2105. PubMed ID: 34080089. Abstract: Baicalin has been reported to have ameliorative effects on nerve-induced hypoxic ischemia injury; however, its role in the NLRP3 inflammasome-dependent inflammatory response during cerebral ischemia-reperfusion remains unclear. To investigate the molecular mechanisms involved in baicalin alleviating cerebral ischemia-reperfusion injury, we investigated the AMPK signaling pathway which regulates NLRP3 inflammasome activity. SD rats were treated with baicalin at doses of 100 mg/kg and 200 mg/kg, respectively, after middle cerebral artery occlusion at 2 h and reperfusion for 24 h (MCAO/R). MCAO/R treatment significantly increased cerebral infarct volume, changed the ultrastructure of nerve cells, and activated the NLRP3 inflammasome, manifesting as significantly increased expression of NLRP3, ASC, cleaved caspase-1, IL-1β, and IL-18. Our results demonstrated that baicalin treatment effectively reversed these phenomena in a dose-dependent manner. Additionally, inhibition of NLRP3 expression was found to promote the neuroprotective effects of baicalin on cortical neurons. Furthermore, baicalin remarkably increased the expression of p-AMPK following oxygen glucose deprivation/reperfusion (OGD/R). The expression of the NLRP3 inflammasome was also increased when the AMPK pathway was blocked by compound C. Taken together, our findings reveal that baicalin reduces the activity of the NLRP3 inflammasome and consequently inhibits cerebral ischemia-reperfusion injury through activation of the AMPK signaling pathway.[Abstract] [Full Text] [Related] [New Search]