These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Nitrogen doping and oxygen vacancy effects on the fundamental properties of BeO monolayer: a DFT study. Author: Hoat DM, Nguyen DK, Guerrero-Sanchez J, Ponce-Pérez R, Rivas-Silva JF, Van On V, Cocoletzi GH. Journal: J Phys Condens Matter; 2021 Jun 24; 33(32):. PubMed ID: 34082415. Abstract: In practice, modifying the fundamental properties of low-dimensional materials should be realized before incorporating them into nanoscale devices. In this paper, we systematically investigate the nitrogen (N) doping and oxygen vacancy (OV) effects on the electronic and magnetic properties of the beryllium oxide (BeO) monolayer using first-principles calculations. Pristine BeO single layer is a non-magnetic insulator with an indirectK-Γ gap of 5.300 eV. N doping induces a magnetic semiconductor nature, where the spin-up and spin-down band gaps depend on the dopant concentration and N-N separation. Creating one OV leads to the energy gap reduction of 31.06% with no spin-polarization, which is due to the abundant 2p electrons of the Be atoms nearest the OV site. The further increase to two OVs and varying the OV-OV distance affect the band gap values, however the spin independence is retained. The magnetic semiconducting behavior is also obtained by the simultaneous N doping and OV presence. Calculations reveal significant magnetization of the BeO@1N, BeO@2N-n, BeO@NOV-nsystems, which is produced mainly by the spin-up N-2p state. Except for the BeO@NOV-1 and BeO@NOV-2, whose magnetic properties are created by the spin-up 2p state of the Be atoms closest to the OV site. The variation of the N-N and N-OV distances keeps the ferromagnetic ordering in the BeO@2N and BeO@NOV layers. Results presented herein may propose efficient methods to artificially modify the physical properties of BeO monolayer, leading to the formation of novel two-dimensional (2D) materials for optoelectronic and spintronic applications.[Abstract] [Full Text] [Related] [New Search]