These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Efficient CRISPR/Cas9-mediated genome editing in Rehmannia glutinosa.
    Author: Li X, Zuo X, Li M, Yang X, Zhi J, Sun H, Xie C, Zhang Z, Wang F.
    Journal: Plant Cell Rep; 2021 Sep; 40(9):1695-1707. PubMed ID: 34086068.
    Abstract:
    Here, we cloned a phytoene desaturase (PDS) gene from Rehmannia glutinosa, and realized RgPDS1 knock out in R. glutinosa resulted in the generation of albino plants. Rehmannia glutinosa is a highly important traditional Chinese medicine (TCM) with specific pharmacology and economic value. R. glutinosa is a tetraploid plant, to date, no report has been published on gene editing of R. glutinosa. In this study, we combined the transcriptome database of R. glutinosa and the reported phytoene desaturase (PDS) gene sequences to obtain the PDS gene of R. glutinosa. Then, the PDS gene was used as a marker gene to verify the applicability and gene editing efficiency of the CRISPR/Cas9 system in R. glutinosa. The constructed CRISPR/Cas9 system was mediated by Agrobacterium to genetically transform into R. glutinosa, and successfully regenerated fully albino and chimeric albino plants. The next-generation sequencing (NGS) confirmed that the albino phenotype was indeed caused by RgPDS gene target site editing, and it was found that base deletion was more common than insertion or replacement. Our results revealed that zCas9 has a high editing efficiency on the R. glutinosa genome. This research lays a foundation for further use of gene editing technology to study the molecular functions of genes, create excellent germplasm, accelerate domestication, and improve the yield and quality of R. glutinosa.
    [Abstract] [Full Text] [Related] [New Search]