These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: (Pro)renin Receptor Knockdown Attenuates Liver Fibrosis Through Inactivation of ERK/TGF-β1/SMAD3 Pathway. Author: Hsieh YC, Lee KC, Lei HJ, Lan KH, Huo TI, Lin YT, Chan CC, Schnabl B, Huang YH, Hou MC, Lin HC. Journal: Cell Mol Gastroenterol Hepatol; 2021; 12(3):813-838. PubMed ID: 34087453. Abstract: BACKGROUND & AIMS: Activation of the (pro)renin receptor (PRR) up-regulates the expression of profibrotic genes in the kidney and heart. We aimed to investigate the role of PRR in hepatic fibrogenesis. METHODS: Human hepatic PRR levels were measured in patients with or without liver fibrosis. PRR expression was analyzed in primary mouse hepatic stellate cells (HSCs). Experimental fibrosis was studied in thioacetamide (TAA)-treated or methionine choline-deficient (MCD) diet-fed C57BL/6 mice. Lentivirus-mediated PRR short hairpin RNA was used to knockdown hepatic PRR expression. Lentiviral vectors expressing PRR short hairpin RNA or complementary DNA from the α-smooth muscle actin promoter were used for myofibroblast-specific gene knockdown or overexpression. RESULTS: PRR is up-regulated in human and mouse fibrotic livers, and in activated HSCs. Hepatic PRR knockdown reduced liver fibrosis by suppressing the activation of HSCs and expression of profibrotic genes in TAA or MCD diet-injured mice without significant changes in hepatic inflammation. Renin and prorenin increased the expression of PRR and production of TGF-β1 in human activated HSC Lieming Xu-2 cells, and knockdown of PRR inactivated Lieming Xu-2 cells with decreased production of transforming growth factor (TGF)-β1 and Mothers against decapentaplegic homolog 3 (Smad3) phosphorylation. Myofibroblast-specific PRR knockdown also attenuated liver fibrosis in TAA or MCD diet-injured mice. Mice with both myofibroblast-specific and whole-liver PRR knockdown showed down-regulation of the hepatic extracellular signal-regulated kinase (ERK)/TGF-β1/Smad3 pathway. Myofibroblast-specific PRR overexpression worsened TAA-induced liver fibrosis by up-regulating the ERK/TGF-β1/Smad3 pathway. CONCLUSIONS: PRR contributes to liver fibrosis and HSC activation, and its down-regulation attenuates liver fibrosis through inactivation of the ERK/TGF-β1/Smad3 pathway. Therefore, PRR is a promising therapeutic target for liver fibrosis.[Abstract] [Full Text] [Related] [New Search]