These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Inclusion of cocoa by-product in the diet of dairy sheep: Effect on the fatty acid profile of ruminal content and on the composition of milk and cheese. Author: Campione A, Pauselli M, Natalello A, Valenti B, Pomente C, Avondo M, Luciano G, Caccamo M, Morbidini L. Journal: Animal; 2021 Jun; 15(6):100243. PubMed ID: 34087758. Abstract: In this study, we hypothesized that dietary cocoa bean shell (CBS) as a partial replacer of human edible cereal grains in the diet of lactating ewes may affect performance and milk and cheese composition. Twenty Comisana lactating ewes allotted into control (CTRL; n = 10) or cocoa (CBS; n = 10) group received alfalfa hay ad libitum and 800 g of conventional (CTRL) or experimental (CBS) concentrate containing 11.7% CBS to partially replace corn and barley of the CTRL concentrate. Milk yield and composition did not differ between groups, and only urea concentration was lower in CBS milk. Dietary CBS increased cheese fat and reduced protein percentage in CBS group. Fatty acid composition of rumen content partially reflected that of the ingested diet, with total saturated fatty acids (SFA), total monounsaturated fatty acids (MUFA), 16:0, 18:0 and 18:1c9 greater in the CBS group. Moreover, all the identified trans- and cis-18:1 isomers were greater in CBS rumen content. Milk and cheese showed a similar fatty acid composition. Total MUFAs were greater in milk and cheese of CBS, mainly due to the proportion of 18:1c9, and conversely, total polyunsaturated fatty acids (PUFA), PUFAn-6 and PUFAn-6-to-PUFAn-3 ratio was greater in CTRL group. Concluding, the inclusion of CBS in the diet of lactating ewes within the limit imposed by the current legislation did not cause detrimental effects on animal performance and milk composition. Interestingly, dietary CBS reduced milk urea concentration probably due to the phenols contained in CBS concentrate. However, our results support that biohydrogenation was weakly impaired by dietary CBS. Finally, CBS negatively affected cheese nutritional characteristics due to lower protein and greater fat content, but improved fat health indexes in milk and cheese.[Abstract] [Full Text] [Related] [New Search]