These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Phenotypically deficient urinary elimination of carboxyphosphamide after cyclophosphamide administration to cancer patients.
    Author: Hadidi AH, Coulter CE, Idle JR.
    Journal: Cancer Res; 1988 Sep 15; 48(18):5167-71. PubMed ID: 3409242.
    Abstract:
    The 0-24-h urinary metabolic profile of cyclophosphamide was investigated in a series of 14 patients with various malignancies receiving combination chemotherapy including i.v. cyclophosphamide. This was accomplished using combined thin-layer chromatography-photography-densitometry, which can quantitate cyclophosphamide and its four principal urinary metabolites (4-ketocyclophosphamide, nor-nitrogen mustard, carboxyphosphamide, and phosphoramide mustard). Recovery of drug-related metabolites was 36.5 +/- 17.8% (SD) dose, the most abundant metabolites being phosphoramide mustard (18.5 +/- 16.1% dose) and unchanged cyclophosphamide (12.7 +/- 9.3% dose). The most variable metabolite was carboxyphosphamide, with five patients excreting 0.3% dose or less. These patients were termed low carboxylators (LC) and could be distinguished from high carboxylators (HC) by a carboxylation index (relative percentage as carboxyphosphamide multiplied by 10). Mean carboxylation indices for the LC and HC phenotypes were 3.4 +/- 2.6 and 151 +/- 115, respectively. There were no associations between patient age, sex, body weight, tumor type, or concomitant drug therapy and carboxylation phenotype. Neither 4-ketocyclophosphamide nor nor-nitrogen mustard excretion differed between LC and HC phenotypes; however, HC patients had a greater excretion of cyclophosphamide (46.4 +/- 15.5 relative percentage) than LC patients (19.4 +/- 12.6%). The DNA cross-linking cytotoxic metabolite phosphoramide mustard was elevated more than 2-fold in the LC (76.5 +/- 13.9%) compared with the HC (33.0 +/- 12.2%) phenotype. It is concluded that these data represent the first evidence of a defect in cyclophosphamide metabolism, and it is proposed that this arises from a hitherto unrecognized aldehyde dehydrogenase genotype.
    [Abstract] [Full Text] [Related] [New Search]