These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Heat-shock response is associated with enhanced postischemic ventricular recovery.
    Author: Currie RW, Karmazyn M, Kloc M, Mailer K.
    Journal: Circ Res; 1988 Sep; 63(3):543-9. PubMed ID: 3409486.
    Abstract:
    In cells, hyperthermia induces synthesis of heat-shock proteins and the acquisition of thermotolerance. Thermotolerant cells are resistant to subsequent oxidative stress. In this study, heat-shocked hearts were examined for evidence of protection during ischemia and reperfusion. Rats were exposed to 15 minutes of 42 degrees C hyperthermia. Twenty-four hours later their hearts were isolated and perfused and the contractility examined during and after ischemic perfusion. No protection was observed during ischemic perfusion. However, upon reperfusion heat-shocked hearts had recovery of contractility within 5 minutes of reperfusion, while control hearts showed no contractility at this time. Throughout 30 minutes of reperfusion heat-shocked hearts had significantly improved recovery of contractile force, rate of contraction and rate of relaxation. Creatine kinase release, associated with reperfusion injury, was significantly reduced from a high of 386.8 +/- 78.9 mU/min/g heart wt for controls to 123.7 +/- 82.9 mU/min/g heart wt for heat-shocked hearts at 5 minutes of reperfusion. Following 30 minutes of reperfusion, ultrastructural examination revealed less damage of mitochondrial membranes in the heat-shocked hearts. Further biochemical investigations revealed that the antioxidative enzyme, catalase, was significantly increased to 137 +/- 12.7 U/mg protein in the heat-shocked hearts while the control value was 64.8 +/- 8.3 U/mg protein. Hyperthermic treatment, which induces the heat-shock response, may be therapeutic for salvaging ischemic myocardium during reperfusion, through a mechanism involving increased levels of myocardial catalase.
    [Abstract] [Full Text] [Related] [New Search]