These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Rapid 3D Printing of Bioinspired Hybrid Structures for High-Efficiency Fog Collection and Water Transportation. Author: Liu L, Liu S, Schelp M, Chen X. Journal: ACS Appl Mater Interfaces; 2021 Jun 23; 13(24):29122-29129. PubMed ID: 34102053. Abstract: Nature often provides unique and elegant solutions for solving engineering problems. For example, cactus, desert grass, and Nepenthes alata have provided inspirations for the design of fog-collection and water-transportation devices. Here, a bioinspired hybrid fog collector consisting of cactus-inspired spines featuring longitudinal ridges on the surfaces and peristome-inspired bottom channels decorated with curved inclined arc-pitted grooves (C-IAPGs) is developed. Experimentally, the fog collector was fabricated by custom-made micro-continuous liquid interface printing with a resolution of 6.9 μm·pixel-1 and a speed of up to 125 μm·s-1. Characterization results show that the printed spines with four longitudinal ridges manifest the maximum fog-collection rate, and the bottom channel with C-IAPGs can efficiently transport the water droplets into the reservoir. This work is believed to be beneficial for developing next-generation fog-collection, water-transportation, and desalination devices.[Abstract] [Full Text] [Related] [New Search]