These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Volatile organic compounds from a mixed fleet with numerous E10-fuelled vehicles in a tunnel study in China: Emission characteristics, ozone formation and secondary organic aerosol formation. Author: Jin B, Zhu R, Mei H, Wang M, Zu L, Yu S, Zhang R, Li S, Bao X. Journal: Environ Res; 2021 Sep; 200():111463. PubMed ID: 34111436. Abstract: The Chinese government has developed an ambitious project to promote the application of ethanol gasoline (E10) on a national scale since 2017. Given the difference in fuel properties between E10 and traditional gasoline, it is necessary to evaluate the volatile organic compound (VOC) emissions from E10-fuelled vehicles. In this study, a two-week sampling campaign was conducted in an urban tunnel, in which E10-fuelled vehicles were dominant, to evaluate the characteristics of VOC emissions from the mixed fleet. In total, 105 VOC species were identified, and the ozone formation potential (OFP) and secondary organic aerosol formation potential (SOAFP) were estimated. The results showed that for vehicular VOC concentrations in the tunnel, alkanes, oxygenated VOCs (OVOCs) and alkenes were the most abundant VOC groups, with the average proportion being more than 80% of the total VOCs. The fleet-average VOC emission factor (EF) was 14.8 mg/km/veh, which was much lower than that from traditional gasoline-fuelled vehicle fleets, and alkanes, OVOCs, alkenes and aromatics were the major VOC groups. Because of the large number of E10-fuelled vehicles in the mixed fleet, a high proportion of OVOCs among the vehicular VOC emissions was observed. Ethane, acrolein, ethanol, ethylene and toluene were the top five VOC species with the largest EF in VOC emissions from the fleet. Alkenes were the main contributors with an average contribution of 43.9% of the total OFP, whereas aromatics dominated the total SOAFP by 95.8% on average. These results may provide a reference for the extensive application of ethanol gasoline and the development of vehicular emission models.[Abstract] [Full Text] [Related] [New Search]