These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: From contact electrification to triboelectric nanogenerators. Author: Wang ZL. Journal: Rep Prog Phys; 2021 Sep 07; 84(9):. PubMed ID: 34111846. Abstract: Although the contact electrification (CE) (or usually called 'triboelectrification') effect has been known for over 2600 years, its scientific mechanism still remains debated after decades. Interest in studying CE has been recently revisited due to the invention of triboelectric nanogenerators (TENGs), which are the most effective approach for converting random, low-frequency mechanical energy (called high entropy energy) into electric power for distributed energy applications. This review is composed of three parts that are coherently linked, ranging from basic physics, through classical electrodynamics, to technological advances and engineering applications. First, the mechanisms of CE are studied for general cases involving solids, liquids and gas phases. Various physics models are presented to explain the fundamentals of CE by illustrating that electron transfer is the dominant mechanism for CE for solid-solid interfaces. Electron transfer also occurs in the CE at liquid-solid and liquid-liquid interfaces. An electron-cloud overlap model is proposed to explain CE in general. This electron transfer model is extended to liquid-solid interfaces, leading to a revision of the formation mechanism of the electric double layer at liquid-solid interfaces. Second, by adding a time-dependent polarization termPscreated by the CE-induced surface electrostatic charges in the displacement fieldD, we expand Maxwell's equations to include both the medium polarizations due to electric field (P) and mechanical aggitation and medium boundary movement induced polarization term (Ps). From these, the output power, electromagnetic (EM) behaviour and current transport equation for a TENG are systematically derived from first principles. A general solution is presented for the modified Maxwell's equations, and analytical solutions for the output potential are provided for a few cases. The displacement current arising fromε∂E/∂t is responsible for EM waves, while the newly added term ∂Ps/∂t is responsible for energy and sensors. This work sets the standard theory for quantifying the performance and EM behaviour of TENGs in general. Finally, we review the applications of TENGs for harvesting all kinds of available mechanical energy that is wasted in our daily life, such as human motion, walking, vibration, mechanical triggering, rotating tires, wind, flowing water and more. A summary is provided about the applications of TENGs in energy science, environmental protection, wearable electronics, self-powered sensors, medical science, robotics and artificial intelligence.[Abstract] [Full Text] [Related] [New Search]