These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Independent modulation by food supply of two distinct sodium-activated D-glucose transport systems in the guinea pig jejunal brush-border membrane. Author: Brot-Laroche E, Dao MT, Alcalde AI, Delhomme B, Triadou N, Alvarado F. Journal: Proc Natl Acad Sci U S A; 1988 Sep; 85(17):6370-3. PubMed ID: 3413102. Abstract: D-glucose transport across the intestinal brush-border membrane involves two transport systems designated here as systems 1 and 2. Kinetic properties for both D-glucose and methyl alpha-D-glucopyranoside transport were measured at 35 degrees C by using brush-border membrane vesicles prepared from either control, fasted (48 hr), or semistarved (10 days) animals. The results show the following: (i) The sugar influx rate by simple diffusion was identical under either altered condition. (ii) Semistarvation stimulated D-glucose uptake by system 2 (both its Vmax and Km increased), whereas system 1 was untouched. (iii) Fasting increased the capacity of system 1 without affecting either Km of system 1 or Vmax and Km of system 2. The effect of fasting on Vmax of system 1 cannot be attributed to indirect effects from changes in ionic permeability because the kinetic difference between control and fasted animals persisted when the membrane potential was short-circuited with equilibrated K+ and valinomycin. This work provides further evidence for the existence of two distinct sodium-activated D-glucose transport systems in the intestinal brush-border membrane, which adapt independently to either semistarvation or fasting.[Abstract] [Full Text] [Related] [New Search]