These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Geminivirus Betasatellite-Encoded βC1 Protein Exhibits Novel ATP Hydrolysis Activity That Influences Its DNA-Binding Activity and Viral Pathogenesis. Author: Gnanasekaran P, Gupta N, Ponnusamy K, Chakraborty S. Journal: J Virol; 2021 Aug 10; 95(17):e0047521. PubMed ID: 34132576. Abstract: Plant virus satellites are maintained by their associated helper viruses, and satellites influence viral pathogenesis. Diseases caused by geminivirus-betasatellite complexes can become epidemics and therefore have become a threat to economically important crops across the world. Here, we identified a novel molecular function of the betasatellite-encoded pathogenicity determinant βC1. The tomato leaf curl Patna betasatellite (ToLCPaB)-encoded βC1 protein was found to exhibit novel ATPase activity in the presence of the divalent metal ion cofactor MgCl2. Moreover, ATPase activity was confirmed to be ubiquitously displayed by βC1 proteins encoded by diverse betasatellites. Mutational and sequence analysis showed that conserved lysine/arginine residues at positions 49/50 and 91 of βC1 proteins are essential for their ATPase activity. Biochemical studies revealed that the DNA-binding activity of the βC1 protein was interfered with by the binding of ATP to the protein. Mutating arginine 91 of βC1 to alanine reduced its DNA-binding activity. The results of docking studies provided evidence for an overlap of the ATP-binding and DNA-binding regions of βC1 and for the importance of arginine 91 for both ATP-binding and DNA-binding activities. A mutant betasatellite with a specifically βC1-ATPase dominant negative mutation was found to induce symptoms on Nicotiana benthamiana plants similar to those induced by wild-type betasatellite infection. The ATPase function of βC1 was found to be negatively associated with geminivirus-betasatellite DNA accumulation, despite the positive influence of this ATPase function on the accumulation of replication-associated protein (Rep) and βC1 transcripts. IMPORTANCE Most satellites influence the pathogenesis of their helper viruses. Here, we characterized the novel molecular function of βC1, a nonstructural pathogenicity determinant protein encoded by a betasatellite. We demonstrated the display of ATPase activity by this βC1 protein. Additionally, we confirmed the ubiquitous display of ATPase activity by βC1 proteins encoded by diverse betasatellites. The lysine/arginine residues conserved at positions 49 and 91 of βC1 were found to be crucial for its ATPase function. DNA-binding activity of βC1 was found to be reduced in the presence of ATP. Inhibition of ATPase activity of βC1 in the presence of an excess concentration of cold ATP, GTP, CTP, or UTP suggested that the purified βC1 can also hydrolyze other cellular nucleoside triphosphates (NTPs) besides ATP in vitro. These results established the importance of the ATPase and DNA-binding activities of the βC1 protein in regulating geminivirus-betasatellite DNA accumulation in the infected plant cell.[Abstract] [Full Text] [Related] [New Search]