These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of different calcium modulators on motilin-induced contractions of the rabbit duodenum. Comparison with acetylcholine. Author: Matthijs G, Peeters TL, Vantrappen G. Journal: Regul Pept; 1988 Jun; 21(3-4):321-30. PubMed ID: 3413297. Abstract: Motilin and acetylcholine (ACh) have a direct contractile effect on rabbit small intestinal smooth muscle. To explore the role of calcium influx in these contractions, we studied the effect of extracellular calcium concentration and of calcium antagonists on the response of longitudinal muscle preparations from rabbit duodenum. Motilin- (10(-7) M) and ACh- (10(-4) M)-induced contractions were abolished in Ca2+-depleted medium. ACh (10(-4) M) or motilin (10(-8) and 10(-7) M) increased the contractile response to added Ca2+ to 130 +/- 6%, 129 +/- 10% and 145 +/- 5% of the maximal response to Ca2+ added alone (10 mM in a cumulative concentration response curve). The sensitivity to Ca2+ was greater in the presence of ACh and motilin (EC50 = 1.0 and 1.1 mM Ca2+) than in the absence of any agonist (1.7 mM). In cumulative concentration response (CCR) curves for motilin and ACh, pD2'-values were 7.0 and 6.6 for diltiazem, 8.4 and 7.8 for verapamil (two calcium entry blockers), 5.6 and 5.2 for TMB-8 (an inhibitor of intracellular calcium), 5.3 and 5.2 for TFP (a calmodulin-antagonist). All CCR-curves showed metactoid-like action of the antagonistic drugs. We conclude that ACh and motilin cause calcium to enter the smooth muscle cell. They are probably operating via separate channels, and use a mechanism which differs from K+-induced influx. Intracellular calcium stores appear to play a minor role in these contractions.[Abstract] [Full Text] [Related] [New Search]