These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Diagnostic Performance of a Machine Learning-Based CT-Derived FFR in Detecting Flow-Limiting Stenosis.
    Author: Morais TC, Assunção-Jr AN, Dantas Júnior RN, Silva CFGD, Paula CB, Torres RA, Magalhães TA, Nomura CH, Ávila LFR, Parga Filho JR.
    Journal: Arq Bras Cardiol; 2021 Jun; 116(6):1091-1098. PubMed ID: 34133592.
    Abstract:
    BACKGROUND: The non-invasive quantification of the fractional flow reserve (FFRCT) using a more recent version of an artificial intelligence-based software and latest generation CT scanner (384 slices) may show high performance to detect coronary ischemia. OBJECTIVES: To evaluate the diagnostic performance of FFRCT for the detection of significant coronary artery disease (CAD) in contrast to invasive FFR (iFFR) using previous generation CT scanners (128 and 256- detector rows). METHODS: Retrospective study with patients referred to coronary artery CT angiography (CTA) and catheterization (iFFR) procedures. Siemens Somatom Definition Flash (256-detector rows) and AS+ (128-detector rows) CT scanners were used to acquire the images. The FFRCT and the minimal lumen area (MLA) were evaluated using a dedicated software (cFFR version 3.0.0, Siemens Healthineers, Forchheim, Germany). Obstructive CAD was defined as CTA lumen reduction ≥ 50%, and flow-limiting stenosis as iFFR ≤0.8. All reported P values are two-tailed, and when <0.05, they were considered statistically significant. RESULTS: Ninety-three consecutive patients (152 vessels) were included. There was good agreement between FFRCT and iFFR, with minimal FFRCT overestimation (bias: -0.02; limits of agreement:0.14-0.09). Different CT scanners did not modify the association between FFRCT and FFRi (p for interaction=0.73). The performance of FFRCT was significantly superior compared to the visual classification of coronary stenosis (AUC 0.93vs.0.61, p<0.001) and to MLA (AUC 0.93vs.0.75, p<0.001), reducing the number of false-positive cases. The optimal cut-off point for FFRCT using a Youden index was 0.85 (87% Sensitivity, 86% Specificity, 73% PPV, 94% NPV), with a reduction of false-positives. CONCLUSION: Machine learning-based FFRCT using previous generation CT scanners (128 and 256-detector rows) shows good diagnostic performance for the detection of CAD, and can be used to reduce the number of invasive procedures. FUNDAMENTO: A quantificação não invasiva da reserva fracionada de fluxo miocárdico (FFR TC ) através de software baseado em inteligência artificial em versão mais atualizada e tomógrafo de última geração (384 cortes) apresenta elevada performance na detecção de isquemia coronariana. OBJETIVOS: Avaliar o desempenho diagnóstico da FFR TC na detecção de doença arterial coronariana (DAC) significativa em relação ao FFRi, em tomógrafos de gerações anteriores (128 e 256 cortes). MÉTODOS: Estudo retrospectivo com pacientes encaminhados à angiotomografia de artérias coronárias (TCC) e cateterismo (FFRi). Foram utilizados os tomógrafos Siemens Somatom Definition Flash (256 cortes) e AS+ (128 cortes). A FFR TC e a área luminal mínima (ALM) foram avaliadas em software (cFFR versão 3.0.0, Siemens Healthineers, Forchheim, Alemanha). DAC obstrutiva foi definida como TCC com redução luminal ≥50% e DAC funcionalmente obstrutiva como FFRi ≤0,8. Todos os valores de p reportados são bicaudais; e quando <0,05, foram considerados estatisticamente significativos. RESULTADOS: Noventa e três pacientes consecutivos (152 vasos) foram incluídos. Houve boa concordância entre FFR TC e FFRi, com mínima superestimação da FFR TC (viés: –0,02; limites de concordância: 0,14 a 0,09). Diferentes tomógrafos não modificaram a relação entre FFR TC e FFRi (p para interação = 0,73). A FFR TC demonstrou performance significativamente superior à classificação visual de estenose coronariana (AUC 0,93 vs. 0,61, p <0,001) e à ALM (AUC 0,93 vs. 0,75, p <0,001) reduzindo o número de casos falso-positivos. O melhor ponto de corte para a FFR TC utilizando um índice de Youden foi de 0,85 (sensiblidade, 87%; especificidade, 86%; VPP, 73%; NPV, 94%), com redução de falso-positivos. CONCLUSÃO: FFR TC baseada em inteligência artificial, em tomógrafos de gerações anteriores (128 e 256 cortes), apresenta boa performance diagnóstica na detecção de DAC, podendo ser utilizada para reduzir procedimentos invasivos. BACKGROUND: The non-invasive quantification of the fractional flow reserve (FFRCT) using a more recent version of an artificial intelligence-based software and latest generation CT scanner (384 slices) may show high performance to detect coronary ischemia. OBJECTIVES: To evaluate the diagnostic performance of FFRCT for the detection of significant coronary artery disease (CAD) in contrast to invasive FFR (iFFR) using previous generation CT scanners (128 and 256- detector rows). METHODS: Retrospective study with patients referred to coronary artery CT angiography (CTA) and catheterization (iFFR) procedures. Siemens Somatom Definition Flash (256-detector rows) and AS+ (128-detector rows) CT scanners were used to acquire the images. The FFRCT and the minimal lumen area (MLA) were evaluated using a dedicated software (cFFR version 3.0.0, Siemens Healthineers, Forchheim, Germany). Obstructive CAD was defined as CTA lumen reduction ≥ 50%, and flow-limiting stenosis as iFFR ≤0.8. All reported P values are two-tailed, and when <0.05, they were considered statistically significant. RESULTS: Ninety-three consecutive patients (152 vessels) were included. There was good agreement between FFRCT and iFFR, with minimal FFRCT overestimation (bias: -0.02; limits of agreement:0.14-0.09). Different CT scanners did not modify the association between FFRCT and FFRi (p for interaction=0.73). The performance of FFRCT was significantly superior compared to the visual classification of coronary stenosis (AUC 0.93vs.0.61, p<0.001) and to MLA (AUC 0.93vs.0.75, p<0.001), reducing the number of false-positive cases. The optimal cut-off point for FFRCT using a Youden index was 0.85 (87% Sensitivity, 86% Specificity, 73% PPV, 94% NPV), with a reduction of false-positives. CONCLUSION: Machine learning-based FFRCT using previous generation CT scanners (128 and 256-detector rows) shows good diagnostic performance for the detection of CAD, and can be used to reduce the number of invasive procedures.
    [Abstract] [Full Text] [Related] [New Search]