These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ecology and biology of the parasitoid Trechnites insidiosus and its potential for biological control of pear psyllids.
    Author: Tougeron K, Iltis C, Renoz F, Albittar L, Hance T, Demeter S, Le Goff GJ.
    Journal: Pest Manag Sci; 2021 Nov; 77(11):4836-4847. PubMed ID: 34148291.
    Abstract:
    Pear cultivation accounts for a large proportion of worldwide orchards, but its sustainability is controversial because it relies on intensive use of pesticides. It is therefore crucial and timely to find alternative methods to chemical control in pear orchards. The psyllids Cacopsylla pyri and Cacopsylla pyricola are the most important pests of pear trees in Europe and North America, respectively, because they infest all commercial varieties, causing damage directly through sap consumption or indirectly through the spread of diseases. A set of natural enemies exists, ranging from generalist predators to specialist parasitoids. Trechnites insidiosus (Crawford) is undoubtedly the most abundant specialist parasitoid of psyllids. In our literature review, we highlight the potential of this encyrtid species as a biological control agent of psyllid pests by first reviewing its biology and ecology, and then considering its potential at regulating psyllids. We show that the parasitoid can express fairly high parasitism rates in orchards, and almost perfectly matches the phenology of its host and is present early in the host infestation season, which is an advantage for controlling immature stages of psyllids. We propose new research directions and innovative approaches that would improve the use of T. insidiosus in integrated pest management strategies in the future, regarding both augmentative and conservation biocontrol. We conclude that T. insidiosus has many advantages and should be included as part of integrated biological control strategies of pear psyllids, along with predators, in-field habitat conservation, and the rational use of compatible chemicals. © 2021 Society of Chemical Industry.
    [Abstract] [Full Text] [Related] [New Search]