These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Fabrication of magnetic polydopamine@naphthyl microporous organic network nanosphere for efficient extraction of hydroxylated polycyclic aromatic hydrocarbons and p-nitrophenol from wastewater samples. Author: He XQ, Cui YY, Zhang Y, Yang CX. Journal: J Chromatogr A; 2021 Aug 16; 1651():462347. PubMed ID: 34166861. Abstract: Herein, we report the fabrication of a novel, well-defined core-double-shell-structured magnetic Fe3O4@polydopamine@naphthyl microporous organic network (MON), Fe3O4@PDA@NMON, for the efficient magnetic extraction of hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) and p-nitrophenol (p-Npn) from wastewater samples. The hierarchical nanospheres were designed and constructed with the Fe3O4 nanoparticle core, the inner shell of a polydopamine (PDA) layer, and the outer shell of a porous naphthyl MON (NMON) coating, allowing efficient and synergistic extraction of OH-PAHs and p-Npn via hydrophobic, hydrogen bonding, and π-π interactions. The Fe3O4@PDA@NMON nanospheres were well characterized and employed as an efficient sorbent for magnetic solid-phase extraction (MSPE) coupled with high performance liquid chromatography (HPLC) for analyzing of OH-PAHs and p-Npn. Under optimal conditions, the Fe3O4@PDA@NMON-based-MSPE-HPLC-UV method afforded wide linear range (0.18-500 μg L-1), low limits of detection (0.070 μg L-1 for p-Npn, 0.090 μg L-1 for 2-OH-Nap, 0.090 μg L-1 for 9-OH-Fluo and 0.055 μg L-1 for 9-OH-Phe, respectively), large enrichment factors (92.6-98.4), good precisions (intra-day and inter-day relative standard deviations (RSDs); <6.4%, n=6) and less consumption of the adsorbent. Furthermore, trace OH-PAHs and p-Npn with concentrations of 0.29-0.80 μg L-1 were successfully detected in various wastewater samples. Fe3O4@PDA@NMON also functioned as a good adsorbent to enrich a wide scope of trace contaminants containing hydrogen bonding sites and aromatic structures, highlighting the potential of functional MONs in sample pretreatment.[Abstract] [Full Text] [Related] [New Search]