These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Bisphenol analogs AF and S: Effects on cell status and production of angiogenesis-related factors by COV434 human granulosa cell line. Author: Bujnakova Mlynarcikova A, Scsukova S. Journal: Toxicol Appl Pharmacol; 2021 Sep 01; 426():115634. PubMed ID: 34174261. Abstract: While Bisphenol A (BPA) has been a requisite plastic additive, as an endocrine disruptor it has been associated with adverse health effects including ovarian disorders. Following implemented restrictions on BPA usage, it is replaced by alternative bisphenols, biological effects of which have not been adequately investigated. Our study examined effects of bisphenols AF (BPAF) and S (BPS), on the human ovarian granulosa cell line COV434, and compared them with BPA, with the focus on cell viability (10-9-10-4 M) and angiogenesis-related factors (10-9-10-5 M), relevant for both the follicle development and ovarian pathologies: vascular endothelial growth factor A (VEGF-A), platelet-derived growth factor AA (PDGF-AA), and matrix metalloproteinase 9 (MMP-9). Each bisphenol impaired cell viability and increased generation of intracellular reactive oxygen species at the highest concentration (10-4 M). While VEGF-A production in BPAF-treated groups did not differ from the control, all doses of BPS and BPA caused a marked reduction in VEGF-A output. Nevertheless, the alterations in VEGF-A production were not caused by the impact on VEGFA gene expression since there were no indications of VEGFA downregulation in the presence of either BPS or BPA. Interestingly, we observed a similar pattern of PDGF-AA output reduction in BPS- and BPA-treated groups to that of VEGF-A production. BPAF and BPS (10-5 M) increased MMP9 expression, however, this effect was not reflected by the increase in MMP-9 production. The results obtained demonstrate that the novel bisphenol analogs are not inert with respect to the ovarian cells, and their effects might contribute to dysregulation of granulosa cells functions.[Abstract] [Full Text] [Related] [New Search]