These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Multifunctional Oxygen Scavenger Layer for High-Performance Oxide Thin-Film Transistors with Low-Temperature Processing.
    Author: Kim MS, Kim HT, Yoo H, Choi DH, Park JW, Kim TS, Lim JH, Kim HJ.
    Journal: ACS Appl Mater Interfaces; 2021 Jul 14; 13(27):31816-31824. PubMed ID: 34180652.
    Abstract:
    In this study, the oxygen scavenger layer (OSL) is proposed as a back channel in the bilayer channel to enhance both the electrical characteristics and stability of an amorphous indium-gallium-zinc oxide thin-film transistor (a-IGZO TFT) and also to enable its fabrication at low temperature. The OSL is a hafnium (Hf)-doped a-IGZO channel layer deposited by radio-frequency magnetron cosputtering. Amorphous IGZO TFTs with the OSL, even if annealed at a low temperature (200 °C), exhibited improved electrical characteristics and stability under positive bias temperature stress (PBTS) compared to those without the OSL, specifically in terms of field-effect mobility (31.08 vs 9.25 cm2/V s), on/off current ratio (1.73 × 1010 vs 8.68 × 108), and subthreshold swing (0.32 vs 0.43 V/decade). The threshold voltage shift under PBTS at 50 °C for 10,000 s decreased from 9.22 to 2.31 V. These enhancements are attributed to Hf in the OSL, which absorbs oxygen ions from the a-IGZO front channel near the interface between a-IGZO and the OSL.
    [Abstract] [Full Text] [Related] [New Search]