These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The transcription factor TEAD4 enhances lung adenocarcinoma progression through enhancing PKM2 mediated glycolysis.
    Author: Hu Y, Mu H, Deng Z.
    Journal: Cell Biol Int; 2021 Oct; 45(10):2063-2073. PubMed ID: 34196069.
    Abstract:
    Lung adenocarcinoma (LUAD) is a deadly disease with a hallmark of aberrant metabolism. TEA domain 4 (TEAD4) is involved in the progression of several forms of cancer including LUAD. However, the role of TEAD4 in LUAD glucose metabolism is rarely reported as well as its potential mechanisms. Pyruvate kinase isozymes M2 (PKM2), the key regulatory enzymes in glycolysis, was predicted to be a target for TEAD4 by bioinformatics analysis. Thus, we aimed to explore whether TEAD4/PKM2 axis was related to LUAD glucose metabolism and malignant phenotype. The expression level of TEAD4 and PKM2 was measured by quantitative real-time PCR and Western blot. Luciferase reporter assay were employed to verify the effect of TEAD4 on PKM2 promoter as well as TEAD4/PKM2 axis on reporter activity of hypoxia inducible factor-1α (HIF-1α). Glycolysis was investigated according to glucose consumption, lactate production and the extracellular acidification rate. The present study indicated that TEAD4 and PKM2 were upregulated in LUAD and closely related to prognosis. Mechanistic investigations identified that TEAD4 played a key role as a transcription factor and promoted PKM2 transcription and expression, which further altered the reporter activity of HIF-1α and upregulated HIF-1α-targeted glycolytic genes glucose transporter-1 and hexokinase II. Functional assays revealed that TEAD4 and PKM2 affected glycolytic and 2-DG blocked the positive function of TEAD4 and PKM2 on glycolytic. Besides, TEAD4/PKM2 axis affects LUAD cell viability, apoptosis, migration, and invasion. Together, these data provided evidence that both TEAD4 and PKM2 were poor prognosticator. Targeting TEAD4/PKM2 axis might be an effective therapeutic strategy for LUAD.
    [Abstract] [Full Text] [Related] [New Search]