These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Computational and Pharmacological Studies on the Antioxidant, Thrombolytic, Anti-Inflammatory, and Analgesic Activity of Molineria capitulata.
    Author: Shovo MARB, Tona MR, Mouah J, Islam F, Chowdhury MHU, Das T, Paul A, Ağagündüz D, Rahman MM, Emran TB, Capasso R, Simal-Gandara J.
    Journal: Curr Issues Mol Biol; 2021 Jun 22; 43(2):434-456. PubMed ID: 34206443.
    Abstract:
    Molineria capitulata is an ornamental plant that has traditionally been used to treat several chronic diseases. The present study was designed to examine the antioxidant, cytotoxic, thrombolytic, anti-inflammatory, and analgesic activities of a methanolic extract of M. capitulata leaves (MEMC) using both experimental and computational models. Previously established protocols were used to perform qualitative and quantitative phytochemical screening in MEMC. A computational study, including molecular docking and ADME/T analyses, was performed. The quantitative phytochemical analysis revealed the total phenolic and flavonoid contents as 148.67 and 24 mg/g, respectively. Antioxidant activity was assessed by examining the reducing power of MEMC, resulting in absorbance of 1.87 at 400 µg/mL, demonstrating a strong reduction capacity. The extract exhibited significant protection against blood clotting and showed the highest protein denaturation inhibition at 500 µg/mL. In both the acetic acid-induced writhing and formalin-induced paw-licking models, MEMC resulted in significant potential pain inhibition in mice. In the computational analysis, 4-hydroxybenzaldehyde, orcinol glucoside, curcapital, crassifogenin C, and 2,6-dimethoxy-benzoic acid displayed a strong predictive binding affinity against the respective receptors. These findings indicated that M. capitulata possesses significant pharmacological activities to an extent supported by computational studies.
    [Abstract] [Full Text] [Related] [New Search]