These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: [Pollution Characteristics of Organophosphate Esters in Frozen Soil on the Eastern Edge of Qinghai-Tibet Plateau]. Author: Liu LY, Yin HL, Jian LJ, Xu ZW, Xiong YM, Luo Y, Liu XW, Xu WX. Journal: Huan Jing Ke Xue; 2021 Jul 08; 42(7):3549-3554. PubMed ID: 34212681. Abstract: In this study, soil samples were collected from the eastern edge of the Qinghai Tibet Plateau in December 2019. The level and distribution characteristics of organophosphate esters (OPEs) in seasonal frozen soil were analyzed, and their sources were discussed. The results showed that the target analytes including tri-n-butyl phosphate (TnBP), tris(2-ethylhexyl) phosphate (TEHP), tributoxyethyl phosphate (TBEP), triphenyl phosphate (TPhP), tri(2-chloroethyl) phosphate (TCEP), trichloropropyl phosphate (TCPP), and tris-(2,3-dichloropropyl) phosphate (TDCPP) were detected with 100% frequency. Levels of Σ7OPEs in topsoil (0-10 cm) and sub topsoil (10-20 cm) were 146.7-348.7 ng·g-1 (mean:231.1 ng·g-1) and 206.5-333.2 ng·g-1 (mean:260.2 ng·g-1), respectively. The Σ7OPEs content level is comparable to that of urban soil,which is worthy of attention. TBEP and TDCPP were the most abundant compounds in the plateau soil. Point source emissions have significant influence on the spatial distribution of OPEs, and regional deposition of OPEs contributes to all sampling sites. The migration ability of different OPE compounds in soil was different. Stronger migration ability was observed for aromatic OPEs (TPhP) than chlorinated OPEs. Principal component analysis showed that the main sources of OPEs in plateau soil were atmospheric wet and dry deposition, manufactured consumer materials, and the release of OPEs from automobile interior decoration.[Abstract] [Full Text] [Related] [New Search]