These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Synthesis and evaluation of FAK inhibitors with a 5-fluoro-7H-pyrrolo[2,3-d]pyrimidine scaffold as anti-hepatocellular carcinoma agents.
    Author: Tan H, Liu Y, Gong C, Zhang J, Huang J, Zhang Q.
    Journal: Eur J Med Chem; 2021 Nov 05; 223():113670. PubMed ID: 34214842.
    Abstract:
    Focal adhesion kinase (FAK) is a ubiquitous intracellular non-receptor tyrosine kinase, which is involved in multiple cellular functions, including cell adhesion, migration, invasion, survival, and angiogenesis. In this study, a series of 7H-pyrrolo[2,3-d]pyrimidines were designed and synthesized according to the E-pharmacophores generated by docking a library of 667 fragments into the ATP pocket of the co-crystal complex of FAK and PF-562271 (PDB ID: 3BZ3). The 5-fluoro-7H-pyrrolo[2,3-d]pyrimidine derivatives demonstrated excellent activity against FAK and the cell lines SMMC7721 and YY8103. 2-((2-((3-(Acetamidomethyl)phenyl)amino)-5-fluoro-7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)-N-methylbenzamide (16c) was selected for further bioactivity evaluations in vivo, including preliminary pharmacokinetic profiling in rats and toxicity assays in mice, and tumor growth inhibition studies in a xenograft tumor model. The results showed that 16c did not affect the body weight gain of the animals up to a dose of 200 mg/kg, and significantly inhibited tumor growth with a tumor growth inhibition rate of 78.6% compared with the negative control group. Furthermore, phosphoantibody array analyses of a sample of the tumor suggested that 16c inhibited the malignant proliferation of hepatocellular carcinoma (HCC) cells through decreasing the phosphorylation in the FAK cascade.
    [Abstract] [Full Text] [Related] [New Search]