These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Human umbilical cord mesenchymal stem cells-derived exosomal microRNA-181a retards nasopharyngeal carcinoma development by mediating KDM5C. Author: Liu J, Zhu M, Tang Q. Journal: J Cancer Res Clin Oncol; 2021 Oct; 147(10):2867-2877. PubMed ID: 34218325. Abstract: OBJECTIVE: It has been studied that mesenchymal stem cells (MSCs)-derived exosomes could suppress tumor growth in nasopharyngeal carcinoma (NPC) and microRNA-181a (miR-181a) could mediate drug resistance in NPC. Focused on this work, the mechanism of human umbilical cord MSCs (hUC-MSCs)-derived exosomal miR-181a was explored in NPC cell progression. METHODS: NPC tissues and normal tissues were obtained from patients, and miR-181a and KDM5C expression was examined. hUC-MSCs-derived exosomes were extracted, identified and co-cultured with NPC cells (C666-1 and SUNE1). C666-1 cell progression in vitro and/or tumor growth in vivo were examined after incubation with exosomes, miR-181a or lysine-specific demethylase 5C (KDM5C). miR-181a and KDM5C expression were examined in NPC. RESULTS: miR-181a expression was reduced while KDM5C expression was elevated in NPC. hUC-MSCs-derived exosomes restrained NPC cell growth in vivo and in vitro. Depleting or restoring exosomal miR-181a promoted or delayed NPC cell progression. KDM5C silencing suppressed NPC cell progression. CONCLUSION: This study concluded that hUC-MSCs-derived exosomal miR-181a retards NPC development via negatively modulating KDM5C, serving as a candidate reference for the therapy of NPC.[Abstract] [Full Text] [Related] [New Search]