These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Meat quality traits and Blunt Meullenet-Owens Razor Shear characteristics of broiler breast fillets affected by woody breast condition and post-cooking meat temperature.
    Author: Sun X, Giampietro-Ganeco A, Mueller A, Maynard CJ, Caldas-Cueva JP, Owens CM.
    Journal: Poult Sci; 2021 Aug; 100(8):101212. PubMed ID: 34225199.
    Abstract:
    This study aimed to investigate meat quality attributes, cooking performance, and water properties of woody breast (WB). A total of 48 broiler breast fillets (7 wk, 3 h debone) of 24 normal (NORM) and 24 severe WB (SEV) were collected. Raw meat characteristics (L*, a*, b*, pH, compression force and energy and) along with the blunt blade of the Meullenet-Owens razor shear (BMORS) properties were determined. Cooking time and internal meat temperature were recorded for each fillet every 5 min on each fillet during cooking. Water/moisture properties and shear values of BMORS were determined at different meat temperatures (HOT [68°C], AMBIENT [22°C] and COLD [4°C]) after cooking. SEV fillets showed higher L*, a*, b*, pH, CF, CE, BMORS force, BMORS energy, and peak counts of BMORS values compared to NORM fillets in raw state (P < 0.05). Cooking time was shorter in SEV fillets than NORM fillets (P < 0.0001). Cook loss, total water loss, and moisture loss (HOT, AMBIENT) were greater in SEV fillets than NORM fillets (P < 0.01). PC-BMORS were greater in SEV fillets than NORM fillets (P < 0.05), and all BMORS shear values increased as post-cooking meat temperature decreased (P < 0.05). Positive correlations were observed between WB scores and raw meat characteristics and shear values. There were also significant relationships (P < 0.001) between WB scores and cooking performance measures except moisture loss for COLD treatment. BMORS force and energy were moderately correlated to total water loss, cook loss, and moisture loss (HOT) regardless of meat temperature (P < 0.05); however, PC-BMORS was only correlated to total water loss at COLD and moisture loss (HOT) at all meat temperatures (P < 0.05). These data corroborate the association of WB condition with impaired quality/texture characteristics in raw and cooked fillets; WB also had a significant impact on cooking time, cooking at a faster rate, along with water/moisture loss during and after thermal processing. Results demonstrate that the post-cooking meat temperature plays an important role in shear test values.
    [Abstract] [Full Text] [Related] [New Search]