These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Evidence for abnormal linkage between urine oxalate and citrate excretion in human kidney stone formers. Author: Prochaska ML, Moe OW, Asplin JR, Coe FL, Worcester EM. Journal: Physiol Rep; 2021 Jul; 9(13):e14943. PubMed ID: 34231328. Abstract: BACKGROUND: Animal models have demonstrated an interactive relationship between the epithelial anion exchanger SLC26A6 and transporter NaDC-1 that regulates citrate and oxalate homeostasis. This relationship is a potential mechanism to protect against kidney stones as higher urine oxalate is accompanied by higher urine citrate but it has not been explored in humans. METHODS: We examined 24-h urine data on 13,155 kidney stone forming patients (SF) from separate datasets at the University of Chicago and Litholink, a national laboratory, and 143 non-kidney stone forming participants (NSF) to examine this relationship in humans. We used multivariate linear regression models to examine the association between oxalate and citrate in all study participants and separately in SF and NSF. RESULTS: Higher urinary oxalate was associated with higher urinary citrate in both SF and NSF. In NSF, the multivariate adjusted urine citrate excretion was 3.0 (1.5-4.6) (mmol)/creatinine (mmol) per oxalate (mmol)/creatinine (mmol). In SF, the multivariate adjusted urine citrate excretion was 0.3 (0.2-0.4) (mmol)/creatinine (mmol) per oxalate (mmol)/creatinine (mmol). CONCLUSIONS: Higher urinary oxalate excretion was associated with higher urinary citrate excretion and this effect was larger in non-kidney stone forming participants compared with those who form kidney stones.[Abstract] [Full Text] [Related] [New Search]