These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The Prospective Ameliorative Role of Zinc Oxide Nanoparticles in STZ-Induced Diabetic Nephropathy in Rats: Mechanistic Targeting of Autophagy and Regulating Nrf2/TXNIP/NLRP3 Inflammasome Signaling. Author: Abd El-Khalik SR, Nasif E, Arakeep HM, Rabah H. Journal: Biol Trace Elem Res; 2022 Apr; 200(4):1677-1687. PubMed ID: 34241775. Abstract: Diabetic nephropathy (DN) as one of the common microvascular complications of diabetes mellitus, is the main cause of end-stage renal disease. Zinc oxide nanoparticles (ZnO NPs) have been employed in several biomedical aspects. This study purposed to explore the mechanistic renoprotective effects of ZnO NPs in STZ-induced DN. Sixty male Wistar rats were allocated into four equal groups: control, ZnO NPs control, STZ, and STZ + ZnO NPs groups. At the end of the experiment, blood and urine biochemical parameters were assayed. Renal tissue level of advanced glycation end products (AGEs) was assayed spectrofluorometrically, moreover, nuclear factor erythroid 2-related factor 2 (Nrf2) DNA-binding activity and IL-1β levels were detected by ELISA. The gene expression levels of thioredoxin-interacting protein (TXNIP) and NOD-like receptor family pyrin domain containing 3 (NLRP3) were detected by quantitative real-time PCR. Oxidative stress markers were determined spectrophotometrically. Also, renal tissue histopathological and immunohistochemical analyses were determined. After 6 weeks of treatment, ZnO NPs markedly improved the biochemical, renal functions, and histopathological findings. Furthermore, ZnO NPs significantly increased Nrf2-DNA-binding activity and downregulated TXNIP gene expression leading to restoration of the redox status. Additionally, ZnO NPs ameliorated AGEs levels, enhanced autophagy activity, and attenuated inflammasome activation via downregulation of NLRP3 expression and reducing IL-1β levels. Based on our results, we concluded that ZnO NPs can be considered as a promising agent for slowing the progression of DN via interplay between autophagy and Nrf2/TXNIP/NLRP3 inflammasome signaling.[Abstract] [Full Text] [Related] [New Search]